The isovector giant dipole resonance and the neutron skin in ${ }^{208} \mathbf{P b}$

M. R. Anders and S. Shlomo

A recent high-resolution measurement [1] of the isovector giant dipole resonance (IVGDR) strength distribution in ${ }^{208} \mathrm{~Pb}$ leads to an accurate value for the electric dipole polarizability α_{D}, which is directly related to the inverse energy moment m_{-1} of the strength function of the IVGDR. The value of α_{D} in ${ }^{208} \mathrm{~Pb}$ was then used in this work to determine the magnitude of the neutron skin thickness, the difference $r_{n}-r_{p}$ between the root mean square (rms) radii of the neutron and proton density distributions in this nucleus, resulting in the value of $r_{n}-r_{p}=0.156(.025) f$ fm. However, the analysis in this work was based on only one form of energy density functional (EDF), associated with a specific parameterization of the Skyrme interaction. To examine the conclusion of the work of Ref. [1], HF calculations of the neutron skin thickness, $r_{n}-r_{p}$, and fully self-consistent HF-based RPA calculations of the electric dipole polarizability of ${ }^{208} \mathrm{~Pb}$ were carried out [2] using 34 commonly employed Skyrme type interactions. Fig. 1 shows the predictions of the 34 Skyrme interactions for the polarizability α_{D} as a function of the neutron skin, $r_{n}-r_{p}$, in ${ }^{208} \mathrm{~Pb}$. The experimental data [1] on α_{D} is shown as the region between the dashed lines. Also shown is the Pearson correlation coefficient $\mathrm{C}_{\mathrm{AB}}=0.54$, which indicates a weak correlation between α_{D} and $r_{n}-r_{p}$. One thus concludes that EDFs associated with theoretical predictions of values of $r_{n}-r_{p}$ in

FIG. 1. The IVGDR polarizability α_{D} as a function of $r_{n}-r_{p}$ in ${ }^{208} \mathrm{~Pb}$. The experimental data on $\alpha_{\mathrm{D}}[1]$ are shown as the region between the dashed lines. The results of fully self-consistent HF-based RPA calculation of 34 commonly used Skyrme interactions [2] are shown as solid points. Also shown is the Pearson correlation coefficient C_{AB}.
the range of 0.14 to 0.20 fm are all consistent with the experimental data on α_{D}.
[1] A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011).
[2] M.R. Anders et al., in preparation.

